1.1

1.0 STATISTICAL BACKGROUND
1.1 Introduction

In most of the following chapters, itwill be assumed thatreaders have
at least tken an introductory course in statistical methods. Somebasic
concepts will nonetheless beeviewed inthis chapter toprovide background
for the following material. Someessential definitions are listed here. Students
should look these up in anyntroductory statistics textbook, but preferably in
a text that they haveused in the past. Areffort has been nade to keep the
introductory terminology to a minimum,and it will be supplemented as we go
along, and by auxillary reading.

1.2 Some basic statistical concepts
Random variables

In even quite simple situaths, we need to be able to distguish
between an abstractlabel for an observation, and the observations that we
actually make in some real-world situation. Statisticians dothis by using
capital letters (X, Xo, X3, ..., XN) for the abstract label and lower case letters
(X1, X2, ..., Xn) for the observations wemake in practice. Note that the ellipsis
(...) means thatsome letters are left out -- from the first three given, we can
infer that these are K Xg, etc., thru X;.1). More importantly, note that this is a

series of finite length -- Nrandom variables inall. In some cases, weneed to
consider anindefinitely long series ofnumbers, and write X1, X2, X3, ... to

indicate that fact. Also, note that therandom variables run from X to XN, but
that the observations end in x3. This is because we oftenwant to sample a
large population and thus only record n of the N possible observations.

Exampl e 1.1 Coi n-tossing Consider a sinmple coin-tossing exanple. Put 10

coins in a jar, shake well, spill them out and count the nunber of
heads. You will get observations like the following table (note that the
i ndi vi dual observation, x,, is the total nunber of heads out of 10 coins

and that the table is based on 100 tosses of 10 coins):

5,5,2,4,3,4,5,6,5,6

4,6,3,7,4,6,5,3,5,4

6,5,52,55,3,3,6,7

5,8,4,3,4,5,6,5/5,3

56,7,58,8,7,3,7,7

5,4,6,5,3,6,4,6,5,4

3,3,6,4,7,5,6,6,3,4

6,4,5,6,6,4,3,4,8,3

6,2,8,5,7,4,6,4,5,6

1,6,6,7,5,3,5,6,7,3
One can continue this process indefinitely, so we nay have to consider
an infinite sanple space. In nmany cases, we will be considering finite
sanmpl e spaces, although we often will not know N. In this case, we do
know that N = 100, but if we are considering some natural population
over a large area, we likely will not know N, and we may in fact have

estimating N as our objective. There is sone anbiguity in notation here
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in that N can be considered to be a fixed population of the outcones of
100 tosses, or a sanple (n) of the infinite nunmber of possible tosses.

Much of statistical metodology consists ofdescribing the outcomes of
"experiments" like coin-tossing, and making inferences abthe# processthat
led to the set of observations. Most of the theamyderlying statistical methods
depends onhaving amodel for the underlying process. Such models are
described asprobability density functions ( abbreviated agdf). Such amodel
for the coin-tossing example isthe bhomial distribution, often written as
Bi(n,p) which says that the probability that arandomly obtained observation
denoted as jxtakes the value k is:

Probfx = K} = fi = f JPK(1-p)NK (L.1)

1
where C ) is evaluated as(n_lrlw , in which, for example, 5! (read as "five
factorial") is calculated as 5x4x3x2x1 = 120.

This equation gives the pdf for a bnomial having ntrials (10 in the
coin-tossing example). In the example, the random variable can take 11
possible values 0,1,2,3..., 10,but in the 100 trials listed above, weobserved no
zeros and no 9'®r 10's. In many practical examples, we won't knowthe value
of p, and want to stimat it from the observed data. If we can sonehow
establish that it is appropriate toassume themodel of eq.(1.1), hen we can
calculate its expected value, defined as:

X=00 x=10

E(x) = [, dx = ZDX(Q) 5 (1-p)* (1.2)
X=0 X=

since we are hereonsidering adiscrete randomvariable that is only defined

on the sample space 0,1,2,...,10, the integral canrepéaced with a summation,

and this can be evaluated with some algebrafind that E(xX) = np. We can then
turn this around to esthate pfrom the mean value ofour sample, which is

calculated asthe sum of the observations 496) divided by the number of

observations (100) or E(x) = np = 4.96. Since n=10, we estimate p as:

" 4941'—36 = 0.496.

The "hat" over pdenotes that it is an_#mate of the parameterp, of the
binomial pdf. From the structure of the experiment we can infer that the value
of p should be about 0.5, that, if the coinis "unbiased", theprobability that it
turns up heads should be 1/2.

The sample mean, X=ZX;i/n is often described asa "statistic" derived
from a set of observations. Other commonly used statistics are the sample
variance:
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& = Z(x% —X)°
n-1

2 1/2 L
and the standard error ofthe mean, s.e. = [Z—] . Note that statistics are

. . - 1
functions of the data. The mean can be written asax(xl + X2 +X3+...+Xn),

which is alinear function of the random variables X, x2, ..., xn. There are

some simple rules fromprobability theory about linear functions ofrandom
variables that make it easy to derive useful results about means.

No doubt the most important probability density function (pdf) in
statistics is the normal distribution, which is written as:

_(x=)?
O_ZD
f(x)= szine 7% (1.9

The pammeter pis the mean of the distribution and o the standard deviation.
Tables of the frequencyistribution (f(x)) of this distribution are available in
almost any statistics text, but with parametgrss 0 ando = 1, which isdescribed
as the unit normal distribution or standard normal distribution, often
represented by the notation N(0,1), while observations drawn from eq.(1.3) are

described as Ni(o2).
1.3 The Central Limit Theorem

A very useful result from matheatical statistics isthe Central limit
theorem:

"Let X be a random variable with mean p and variance
o2, then the random variable Z:

(x=Kn

(o)
has a distribution that approaches the standard normal
distribution as n approaches infinity.

Z =

This saysthat, if n islarge, hen weare virtually guaranteed that the sample
mean will have nearly anormal distribution. Inasmuch asthe great bulk of
modern statistical methods depend onhe normal distribution, this result is
very reassuring. The important question hen is "how large must n be for
approximate normality?", and the answer depends very much on the
frequency distribution underlying the observed. x

Exanmple 1.2 Frequency distributions Consider the data from the coin-
tossing experinent (Exanple 1.1). The random variable tabulated is the
nunber of heads in 10 tosses. W can tabulate the frequency of each
outcone (0,1,2,3,...,10 heads) and conpare it wth the expected
frequency calculated fromeq.(1.1), giving the following result:
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Fig. 1.1 Frequency distribution of number of heads observed in 100 tosses of a coin
compared to number expected from eq.(1.1), Bi(10,0.5).
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The observed data are not as symetrical as the expected binom al
di stribution, but the variance (2.34) is a reasonably good approxi mation
to the variance fromthe theoretical binonmal (2.5) and the nean (4.96)
of 100 trials is very close to the theoretically expected value (5). The
expect ed bi nom al variance of the random vari abl e x, the nunber of heads
in 10 tosses, is readily calculated as np(1l-p) = 5(.5)(.5) = 2.5. It is
worthwhile to conpare (Fig. 1.2) the expected binomal distribution with
a normal distribution with the theoretical nmean and variance, as
cal culated fromeq. (1.2).
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Fig. 1.2 Expected values from a binomial distribution of outcomes of 10 tosses of coins
compared to frequencies calculated from a normal distribution (broken line) with the
theoretical mean (5) and variance (2.5) for the binomial distribution.

Note that the normal distribution is continuous, i.e. that it takes on
all values over the interval <considered and is thus only an
approxinmation to the discrete distribution of the results of coin-
tossing, in which only integer values can be observed (i = 1,2,3,...,n
heads). Hence the points representing the binonmial distribution in Fig.
1.1 properly should not be connected by Ilines. Because the normal
distribution has an infinite range it isn't strictly proper to use it in
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Fig. 1.2 because there is only a finite possible range of outconmes (0 to
10). However, it is often used as an approximation. Note, too, that
there is less area under the normal distribution in Fig. 1.2 because
theoretically sone observations wll be greater and |esser than the
range plotted.

1.4 Simple linear regression

Simple linear regression follows the model:
i ¥ o+ PBXj + g (1.4)

where y is the dependent variableand X the independent variable and the
error term §) is a deviation from the'true” relationship. Estimates ofa and B
are frequently written as aand b,giving the estimated orfitted relationship
as:

yj =a + by (1.5)

Estimates ofregression parametersga and B do not require any assumptions,
and can be calculated from anset of x,y mirs. However, tests ofsignificance
and confidencelimits require adding some assmptions, which centeraround

the ¢j being normally distributed wth mean zero and variance o2. The

assumptions will be discussed after we consider ‘thechinery" ofregression
analysis.

The estimates are obtained by the method of least-squares,important
and useful tool that traces back tolLegendre and Gauss (known also for the
normal distribution) in the early 1800's. Other ways of fittingsteaight line to
data are available, but seldom used. The approach is based on minimizing a sum
of squared deviations, written as:

S =Z[yj -(o + Bxj)]2 (1.6)

where the summation runs from 1 to n. This is accomplished byntkéhods of
calculus, finding the partial derivatives:

0S

3a =2 (y a B;x)=0 (1.7)
oS _ _
B 22 x(y, -a -Bx)=0

these give the normal equations o and B are replaced bythe symbols for
estimates, a and b):

2yi = na + xj (1.8)
> yixj = aXxj + bZxj2

and these can be solved jointly to give the estimates:
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a=y-bx (1.9)
b= O =% = %)
v\2
Z(X —X)

Note that the deviations of ed1.4) are in thevertical plane, being deviations
of yj from the fitted line. Fig. 1.3 shows two of the deviatiotem aregression

line fitted tosome counts ofdeer. The fitted line appears onthe graph along
with a measure of the fit, 8 which will be defined below.
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Fig. 1.3.Simple linear regression fitted to successive counts ofthe number of
deer on a study area by the method of least squares.

Table 1.1 gives the analysisf variance resultsfor the deer data from EXCEL, in
ANOVA format (the analysis ofvariance is dcussed inChapter 6). Figure 1.4
shows thedeviations from the mean of they-values, and acomparison with
Fig. 1.3 shows why thereduction in Sum of Squares from regression is so
substantial (compare Total SS with Residual SS). The residual S.S. is computed
from the residuals from the fitted regression line, i.e.:

n n
Residual S. S= Z [y —(a+bx)]* = Z[yi «(y —bx +bx)]? (1.10)
i=1 i=1
n
= S Iy =) =b(x =X)]°
i=1
n n ~ n ~
=S -(@+b)]* = 5 (v -y)*-b* 5 (x —9* (1.11)
1=1 | — H

1 =1
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Residual SS = Total SS - Regression SS

Eq.(1.11) can be obtained by introducing the definition of b after squaring the
intermediate step above.

Table 1.1 Analysis of variance in regression of delta of Fig.1.3 asobtained
in EXCEL.

ANOVA
df SS MS F P value
Regression 1 28992.89 28992.89 73.25 0.0004
Residual 5 1979.11 395.82
Total 6 30972.00
Coeffici Standard t Statistic P-value Lower 95% Upper 95%
ents Error
Intercept -41.71 16.81 -2.48 0.06 -84.94 1.51
Slope (b) 32.18 3.76 8.56 0.00 22.51 41.84

EXCEL gives the slopecoefficient (b) as "XVariable 1" becausethe regression
program is also set up toeandle multiple regression, where there will be 2 or
more independent variables. ANOVA is discussed in detail in Chapter 6.
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Fig. 1.4 Deer data as in Fig. 1.3 bsthowing deviationsfrom the meanof the y-
values, —y. This shows why theResidual S.S. iordinarily much smaller than
the Total Sum of Squares, which is calculated from the deviations illustrated
here.

If the F-value is notsignificant, there clearly isnot much to begained
from the regression line. For simple linear regression, the square root of R-
squared (R) is ®arson's product-moment correlation, usually simply referred
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to as "the" correlation coefficient (but written as a lower-caser), and
calculated as follows:

o DX
[Z(x —X)*=(y, -y)7Y?

The correlation coefficient is relatetb the slope of theregression line (b) by
the following expression:

(1.12)

—_ Z(Yi _7)2 1/2
b _[—Z(xi _)_()2] r (1.13)

S
this is sonmetimes expressed bgi’- r, i.e., the ratio of the sample <s=ndard

deviation of y tothat of x times r. R is also used for multiple regression
(described below), where the square root is not the ordinary correlation

coefficient, so it is useful to have another expression fér Rhis is:

n ., B
> =)’
2_i=1
R = (1.14)
> -y’
i=1

The quantity R is often described asmeasuring the "percent ofvariance
accounted for by regression", ioonsequence ofhe fact that it is the ratio of
the Regression SS to the Total SS.

Another valuable expression is that of the estimated variance of the slope:

§= L_ (1.15)
> (% =%
=1

This expression is particularly usefubecause itmakes itpossible
to suggest how the atimate of b with smallestvariance might beobtained.
Concentrating the selection of values of a which to observe jyat theends of

the possible range of will evidently give the smallest obtainable variance on
b (by giving the largest possible value ofthe denominator in eq.(1.15)).
However, such a course iseecommended only when one can be virtually
certain that the underlying relationship is linar. We will consider ways to
test for nonlinearity in the regression line in a section below. Note, for
example, thatthe data of Fig.1.3 seemclearly tofollow a curved relationship.
Concentrating the observations atx-values at the ends of therange of
observable y wuld make itimpossible todetect suchcurvature. Wether we
can concentrate observations depend$, course, onthe nature ofthe data. I n
the case of thecounts ofdeer, wenormally make only oneobservation per
year, if the data are anactual census(i.e., acomplete count othe deer on an
area). In the case of asample estimate othe number present, it may be
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possible totake epeated, independent samples and thusget several estimates
per year (replicates).

A confidence interval for the slope, b, uses the t-distribution:
bita,d.f.sn (1.16)

Note that a now represents the significance level for the t-distribution, and
not the paameter of a regressionline. Additional confidence intervals for

values predicted from the regression line of y or foy agiven xare given in
standard references (e.g., Snedecor and Cochran). Much more detail on
regression analysis is given itexts on thesubject. Anextensive treatment is
given by Draper and Smith (Applied Regression Aalysis, J. Vley and Sons
Third Edition, 1998). The main parts of the book are presented immatrix
algebra notation, but the authors dogive a short introduction tothe matrix
algebra that is adequate tolet one follow their presentation ofregression
topics, and not difficult to understand.

In order to justify any significance tests iregression analysis wemust
consider the assumptions. The model now becomes:

iy=a + BXj + € (2.17)

where, aswith the ANOVA model, we now assume that thesi are normally

distributed with mean zero, variance o2, and are uncorrelated (independent).
An important additional assumption isthat the x values are all measured

without error. If the X are subject tomeasurement ("sampling”) variation,

then the regression line can still be calculated as given above, but its
interpretation changes, as dthe tests of signifiance. For the mostpart, the
assumptions for linear regression are somewhat less troublesome Hhan for
ANOVA in general. However, we usually need large numbersregiicates to do
any testing of the assumptions. Possibly the most imporfaeicaution is to be
sure that anyreplicate values of yare indeed obtained ndependently. In
much ecological data it appears likely that the variances ofsets ofy-values
may be proportional to thejrat which they are taken, orthat the coefficients
of variation of the replicate y-values may beapproximately constant. The F-
tests will hen be less-reliable. However, simple linear regression is quite
"robust"” to uncertainties about the assuimp of normal errors, so long as the
x-values are not subject to error.

A simulation isuseful in appraising the assumptions for simple linear
regression. Using eq. (1.17) as

y =2 + 0.30x + g
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with the X as 1,2,3,... ,10and the ¢j generated as observationfrom anormal
distribution wth mean Oand variance =02 =1, one can generate aable of

"data" as before. This was done to produce a set of data for 20 regression lines.

The first 5 data sets are as follows:

Simulated y
True y 1 2 3 4 5
2.30 286 1.28 261 3.26 1.88
2.60 0.90 2.08 258 1.68 1.11
2.90 1.56 3.35 1.35 4.28 3.50
3.20 3.85 2.84 202 3.67 2.46
3.50 1.62 4.20 4.87 149 4.68
3.80 439 578 522 277 3.62
4.10 3.66 2.61 4.70 4.24 4.99
4.40 3.95 390 598 259 381
4.70 445 6.15 6.41 553 3.72
0 5.00 450 553 6.09 354 4.32

P OO ~NO Ol WN P~ X

Note that the simulated data vamppreciably fromthe "true values” computed
from yj =2 + 0.30x%, which appear inthe second celmn above. The simulated

data points should follow a normal distribution around the true regression
line. Plotting the data (Figl.5) suggests a certaimount ofclumping near the
center insome caseshut alsoshows considerable variability around the true
line. If we plot all 200 deviations used to construct the simulations (20
simulations for each of 10x-values (Fig. 1.6) hen it does appearthat the
underlying distribution is roughly symmetrical, but it should be aemt that
one cannot do muchesting for normality with smaller samples (say 10 or 20)
of deviations from a regression line.

8_
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VALUE OF X

Fig. 1.5Simulated regression data plotted with the trueregression line from
which the data were simhated by addingnormal deviates with meanzero and
unit variance.
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Fig. 1.6 Plot of 200 normal deviations with mean zero amidt variance used to
obtain 20 regression simulations.

The regression program in EXCEL used toproduce Tablel.1 was run on
all 20 sets ofgenerated data and theestimates ofintercept (a) and slope (b)

were tabulated along wth the residual M.S. (32) and the confidence limits for
b. The error M.S. estimates ranged from 0.5 to 2.41,but averaged 1.05, very
close to theexpected 1.0Estimates of theintercept (a; true value 2.0) ranged
from 0.2 to 2.83,averaging 2.02, while slope estimates (b; true value 0.30)
ranged from 0.11 to 0.54,averaging 0.31. The 95% confidence limits (Fig. 1.7)
for the 20 regression estimated the slope (b)vary considerably, but include
the true value in 1®f 20 cases, asxpected (0.95(20)=19). Itshould benoted
that this was a fortuitous outcome much larger simulations wald be needed
to be sure that the confidence limits actually include the fBu&é 95% of cases.
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Fig. 1.7 Confidence limits (95%) for slope of 20 simlated regression lines,
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shown with the true value(0.30). Note that confidence limits for the 3rd data
set do not include (are above) the true value.

1.5 Multiple regression

Multiple regression issomewhat of arisky proposition for ecologists,
inasmuch as relationships betweeseveral ecologicalvariables tend not to be
linear. However, it can be used to exploceirvilinear relationships (which we
will do below and in the Exercises) and there ar@&rious circumstances where
a linear model may be useful. It is aldoue that amultiple regression model is
behind many other kinds of analyses. The analysis of variance caobbained
through a multiple regression model, butwith a different structure Han that
used here.

The gereral model islike that for simple linear regression, but adds
more independent variables. We will use 2 here, but EXCEL wdlnpute models
with many x-variables. The basic model is:

Yi =0 +Bxy; +B,X5 +E (1.18)

and the sameassumptions are made. Weagain minimize the sum ofsquares
leading to normal equations in threeariables andthe following solutions for
the parameters (a, 1b bp):

a=y-bx1- bpx2 (1.19)
bl :[Z(Xz _)_(Z)ZZ(Vi _9)(X1i _)_(1) _Z(Xu _)_(1)(X2i _)_(Z)Z(Vi _)_/)(Xzi _)_(2)]/ D

b, = [(Z(%y = x0)* (Y, =Y) (X —X2) =Z(%; —Xa)(Xy —X2) X(y; —y)(¥; —x1)]/ D
where:

D = Z(x; —X1)*Z(Xy —X2)* ~[Z(Xy; —X1)(Xy —X2)]?

Our first use of theabove equations will be with x =x; and % =x2, which may

look suspicious, but the purpose is legitimateinasmuch as wecan now fit a

second-degree polynomial (a "quadratic" tamany statisticians) as anaid in

studying curvature in regression data. To illustrate, we use the deer ddtag.of
1.3 getting the curve ofFig. 1.8. Snedecor and Cochrarfl967) show how to do
the Analysis of variance in regression in stagéisting first x1 and hen x» to

see whether there is any gain in adding a second variable. Inptégent case,
we know that the second variable is necessary to yield a curve.
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Fig. 1.8. Second degree polynomifitted to deer data ofFig. 1.3, using multiple
regression with x = x, and » = x2.

Multiple regression can be usedfor a wide variety of analyses.For example,
the analysis of variance can be represented andcomputed in amultiple
regression format. A wide range of analysesbased onmultiple regression
equations are described insome statistic texts under the heading of'General
Linear Hypotheses".

1.6 A test for significant deviations from regression using replicate points.

A test for significant deviations from linearity depending onfitting a
curve and testing tsee whether the impovement in fit might simply be due
to chance will be discussed in thenext section. In some cases, hoewer,
replicate counts maybe available, sothat one canuse the variability within
years totest significance ofdeviations from linearity. This is the preferred
approach, when available. The advantage ighat we donot need tospecify an
alternative model like the quadratic orcubic, which may very well be the
wrong model. Note, for example, thatpopulation growth data such as that of
Fig. 1.8 are known to follow an exponential or geometric curve rather than the
second degree polynomial used in Fig. 1.8. Somecounts of brown Iears at
spawning streams provide an exampléor the test (Fig. 1.9). In this case, the
test consists of making the usual analysis of variance to test for significance of
the linear regression (Table 1.2), and ten using the pooled variance of
individual observations within years to estimate "pureerror® (Draper and
Smith 1998:49). Thedata for calculation ofpooled error appear inTable 13. A
sum of squares of deviationsfrom the mean isalculated forthe data ineach
year where there are two or more observations and these values are summed to
give an overall sum of squares, which ssibtracted from the "residual® sum of
squares in Table 1.2 to yield the "lack fit" sum of squares (i.e.the variability
not accounted for by "pure error"). The number ofcounts used tocalculate
pure error (32) is sinmlarly subtracted from the degrees of freedom for
residual error to get the degrees of freedom used to calculate a mean square for
"lack of fit". The resulting F-test indicates significance atthe 0.05 lkvel, but
there does not seem to bmuch evidence of a cogistent pattern of change in
Fig. 1.9.



Table 1.2 Test of significance for deviations from regression

df SS MS F Prob.
Regression 1 0.127 0.127 6.258 0.016
Residual 47 0.954 0.020
Total 48 1.081
Lack of fit 15 0.479 0.032 2.150 0.034
Pure error 32 0.475 0.015

1.14

44 BROWN BEARS
4.2 - s 3 ° °
o J . s s
= 4
S 4.0 ° ° ®
O ] [ ] ! [ )
O 3 ®
Z 3.8 o
y = 3.9872 + 9.3687e-3x R~"2 = 0.029
3.6
®
34 1 1 1 ' 1 1 ' 1 1 1
3 4 5 8 9 10 11

Fig. 1.9 Logarithms of counts of brown bears on salmon spawning streams.
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Table 1.3 Data for computation of "pure error" for brown bear counts.

Year Bears/hour

39.85
64.04
61.88
61.2
55.24
68.7
59.3
67.9
65.3
49.4
51.4
61.6
47.4
52.45
51.88
45.14
62

N~Nooooo oA DWWWWW

In

Sum of
squaresd.f.

(bears/hr)
9.5219
4.1595
4.1252
4.1141
4.0117
4.2297
4.0826
4.2180
4.1790
9.9000
9.9396
4.1207
9.8586
9.9599
9.9489
9.8098
4.1271

0.2819 4

0.0134 3

0.0400 4
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7 48.13 9.8739
7 49.58 9.9036
7 51.21 9.9359 0.0572 4
8 62.06 4.1281
8 66.59 4.1986
8 62.32 4.1323
8 66.88 4.2029
8 65.03 4.1748
8 64.58 4.1679 0.0051 5
9 54.17 9.9921
9 67.49 4.2120
9 66.67 4.1998
9 62.8 4.1400
9 61 4.1109
9 62.42 4.1339 0.0311 5
10 48.68 9.8853
10 51.47 9.9410
10 58.51 4.0692
10 57.65 4.0544
10 54.08 9.9905 0.0238 4
11 61.12 4.1128
11 55.15 4.0101
11 68.29 4.2238
11 61.52 4.1194 0.0229 3
Sums2386.08 166.2194 0.4753 32

1.7 Testing for curvilinearity without replications

Trend data areoften collected without replications. Occasionally this is
because an absolute count isade annually ofindividuals on anarea; more
often it is becausethe investigators cannot afford to make replicate sample
counts (seasonalkhanges limit the time that such"replicates" are likely to be
valid, too). In such circumstances, checkingfor nonlinearity ofregression
depends onfitting a straight line and acurved line, and appraising the
improvement, ifany, provided by the curve. The simplest curve available is
the seconddegree polynomial ("quadratic") considered inthe section (1.5) on
multiple regression above. Sometimes it may be worthtrying athird-degree
polynomial ("cubic"), which is readily computed by multiple regression in
EXCEL. The model is:

yi =a +B1X1i +ﬁ2X2 +B9(3 +£i (120)

where x =x, x2 =x2, x3 =x3. If a graphics program that fits polynomials is
available, it is vorthwhile touse it for aquick preliminary check. Oten the
3rd degree polynomial has too much curvature, andthe practical approach is
to stick with the quadratic.

The procedure is straighdrward. One first fits the simple linear
regression model, obtaining the ANOVA of Table 1.1.Then fit aquadratic, and
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obtain the fit illustrated in Fig. 1.8,along wth the corresponding regression
ANOVA (Table 1.4).

Table 1.4 Analysis of variance imegression based on anultiple regression fit
of a second degree polynomial (Fig. 1.8) to the deer data.

ANOVA
df SS MS F Significance
F
Regression 2 30702.90 15351.45 228.19 0.0001
Residual 4 269.10 67.27
Total 6 30972.00

From the linear regressiontable (Table 1.1), extract the residual sum of
squares and use it as the first entry in a new table (TalBg From the ANOVA
table giving the multiple regression fit(Table 1.4) also extract the residual
sum of squares and make itthe second entry in the new table. Use the
corresponding degrees of freedomin both cases. Subtract the S. S. for
curvilinear regression from the S.Sor linear regression. This quanity, with
1 degree of freedom, represents the improvement in fit provided by
curvilinear regression and is tested against the M.S. for curvilinear
regression by an F-test. Table 1.5 gives the new arrangement for the deer data.

Tabe 1.5 Testfor curvilinearity of regression usingthe difference between
Residual Sum of Squares in linear regression and multiple regression.

TEST FOR CURVILINEARITY-ORIGINAL SCALE

SOURCE df. S.S. M. S.
Dev. from linear regr. 5 1979.11
Dev. from curvilin. regr 4 269.10 67.27
Difference 1 1710.01 1710.01
F-RATIO 25.42
SIGNIFICANCE LEVEL 0.0073

Note that the F-do in this table isreversed from the usualregression
case. Previously wecalculated the F-ratio from M.Sregd/M.S.resid with 1 and

n-2 degrees of freedom. Now we use Mi$/M. Sdev from curvil. regr. with 1

and n-3 d.f. (n-3 becausethe 3parameters okq.(1.19) are fit tothe data). In
the rare case of using a cubic model, one would use the sameedure, but n -
4 d.f. because ath pammeter isfitted in the cubic (3rd degree polynomial)
model.

It is worthwhile tolook atthe equations for residual S.S. on which the
test is based. From eq. (1.10) the S.S. for linear regression is:

S. S. Residual (linear regr.) Eyij -(a + [3xi)]2
The corresponding S.S. for the quadratic (2nd degree polynomial) would be:

S.S. Residual (quadratic) Z[yj -(o + B1X1j + [32x2i)]2 (1.20)
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From these equations, itcan be seen that an improvefit with the quadratic
model should reduce the S.S.considerably. Ifnot, then the F-ratio should be
small and non-significant.

There are various difficulties in using this test on real datamostly
associated with the inaccuracies ofcensusing animals and the very real
prospect that a population may cease to grow for avariety of reasons.
Ecological data are like that! Sonsatistics books and edite advise checking
assumptions before analysesare published. Asnoted previously here, such
tests require more data han are ordinarily available, and may thus be
misleading and contradictory.

Following the advice totest asamptions, one might well use theabove
test to seewhether population growth data are linear or non-linear. It is
worthwhile to conduct such a test as a wiay explore the dataAn Exercise asks
the student toconduct thesetests onactual data on growth of anumber of
populations. Theoretically, the outcome should be that thetest will show
nonlinearity and thus lead to using #@ansformation. Inthe real world, the
results are confusing. The moral is that experience and accdpteary dictate
the advisability of a transformation.

1.8 Basic models for population growth

Most ecology textbooks describe population growth bythe familiar
exponential model:

Nt = Npe't (1.22)

Where N is population size at time t, 0Nthe starting population size, and r the

"instantaneous" rate of population growth. It is worth pointing out thareaat
many populations donot follow the commonly assumed model, inasmuch as
they reproduce only during a short annualperiod, and thus follow what has
been called a "brth-pulse" model, sputing up in numbers athe time of
reproduction, and ten cdcreasing through the rest of the vyear due to
mortality. Eg. (1.22) describes continuous change, with reproduction and
mortality assumed to be going on constantly in any short time periothodel
closer to the truth is of the "compound interest" type:

Nt = No(1 + rt (1.23)

Thus, where equation (1.22) describes a smoothlyascending continouscurve,
eq.(1.23) describes d'step function” jumping up atspecific times and then
staying flat in the interim. Neither model is correct atall times, butthey do
agree at specific times. Figur&.10 sketches out the likely actual tme trend of
a population, along wth the results of eqg1.22) and (1.23). Either model can
be described by N=NgAl, with A representing Eor (1+r). When weuse a log
transform to represent population growth data as astraight line (thus
performing "log-linear" regession), itis important to have in mind this
interpretation ofthe slope of theregression represented bythe two models.
Note that eq. (1.23) is actually only defined atthe time of reproduction or



1.18

recruitment, but the plot(dashed line) connects these “jumps” by a straight
line.
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Fig. 1.10 The two population growth models of egs. (1.22) and (1.23).
1.9 Testing for differences between regression lines

An essential feature ofegression analysis isthe ability to determine
whether a number of fitted regression lines differ. We start outcbysidering
whether the slopesp() of several lines are sigicantly different. If not, then
it is logical to test whether the intercepts ) are different. This leads to the

Analysis of Covariance, discussed in the next section.

Most of the data for testing equality of slopes comes from the
calculations presented in Section 1.4. The main new feature lies in estimating a
common slope. In order tocompare the several slopes, we will first need to
combine individual slopes toobtain a"pooled" value to compare with the
individual values. This also can be obtained bighting the individual slopes
inversely by their variances. The weights come from the variance estimate for
individual slopes, eq. (1.15). A basic assumption in assessing regression lines is
that they all have the ame variance about regression, asestimated by the
residual (error) mean square of eq. (1.10). As always, if therenisugh data it
is worthwhile to test that assumption. WQually only grossdifferences can be
detected with small to moderate sized data sets. If weassume acommon

variance (3), then the weights can be taken as:
n
w =3 (% -%) (1.24)
=1

Thus the slope based on the widest spre&dx-values getsthe most weight, and
the pooled slope becomes:

= _2W
b:—'q (1.25)
W,
where we have kregression lines toanalyze sothe summations run from 1 to
k. In the analysis, we pool familiar sums sfjuares for the kregression lines,
namely:
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Sy =3(y, —9)°, SX =Z(x —X)*,and Sy =Z(y, -y)(% —X)

and use these toarrive at apooled estimate of theresidual (error) sum of
squares. The resulting mean square is thenused as thedenominator in an F-
test, where the numerator is:

S.giff = Zwi(bj - D)2 (1.26)
with k-1 degrees of freedom.

For an example, wecompare rates ofpopulation increasefor data on
deer, horses, and elk. Models forrate ofgrowth (eq. (1.22) or (1.23)) indicate
that the data should be log-transformed (using logarithms to base e),
whereupon the slope ofa simple linear regression line will estimate a rate of
population growth. This rate ofincrease for deer (Fig. 1.11) is apparently
appreciably higher than those of the other two species. Note tthate will be
a difference in interpretation of the slopes (b) depending onwhether
eq.(1.22) or (1.23) is assumed to hold. Details appear in Section 11.2.

10 - ELK
8.0006 + 0.19067x RA"2 = 0.965
8—
% HORSES
m 5.6388 + 0.19292x RA"2 = 0.995
=
)
Z 6
@)
@)
|
4
2.1160 + 0.48799x R"2 = 0.956
2 T T T T T T T T T 1
0 2 4 YEAR 6 8 10

Figure 1.11 Log transformed data on numbers ofthree species with fitted
regression lines.

The first 3 columns of data in Table 1.5 are calculated from the
individual data sets and summetb get the "pooled" data. The slopes (k) are

calculated from eq. (1.9), and the first 3 sumssqglares (S.S.) onthe right are

calculated from theright side of eq.(1.11), i.e., from SSy - KSSx, and summed
(totalling 0.363). Thefourth S.S. (2039) in this column isalso calculated from
eq. (1.11), but using the "pooled" data, while the S.S. labelled

"Difference between slopes" (1676) isobtained asthe difference between the
pooled value (2.039) and the sum (0.363) of tinelividual sumsof squares. The
F-test is the ratio of 2 mean squards676/0.113 = 14.79ith 1 and 18d.f., and is
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highly significant (P =0.001) as might beexpected from the difference in
regression lines (Fig. 1.11).

Table 15. Data for a test ofsignificance ofequality ofslopes for 3regression
lines.
Source SSx SSxy SSy Slope d.f. S.S. M.S.
Horses 17.5 3.3760 0.6548 0.1929 5 0.00348 0.00070

Deer 28.0 13.6636 6.9713 0.4880 6 0.30359 0.05060

Elk 42.0 8.0081 1.5830 0.1907 7 0.05608 0.00801

0.36315
Pooled 87.5 25.048 9.209 0.2863 18 2.03884 0.11327

Difference between slopes 1 1.676 1.676
F 14.794
Prob. 0.0012

The "Difference between slopes” S.S.of Table 1.5 can be calculated
directly from eq. (1.26), using the weights calculated from eq. (1.24) to

calculate the weighted slopé Jtof eq. (1.25). The alculations appear in Bble
1.6. Note that Table 1.6 is not needed for the F-test butprovides some further
insight into the basis for calculations.

Table 1. 6. Calculations for eq. (1.26).

Weights b whi (h-D )2 W(bj-D )2
Horsel7.5 0.193 3.376 0.0087 0.1525
Deer 28.0 0.488 13.664 0.0407 1.1394
Elk 42.0 0.191 8.008 0.0091 0.3838

87.5 Sum  25.048 S.S. 1.6757
b-bar 0.286

Another example concerns asituation where itseems likely that the
regression intercept af should be zero. The data comefrom a study of
Hawaiian monk seals. These sealsccupy 5sites spread overabout 1300 miles
northwest ofthe main Hawaiian Islands, and are classified asEndangered
under the Endangered Species Act. To monitor their abundance, "beach
counts" are conducted annually onmost of the sites. Thesamount to tallying
all seals seen incovering all beaches on @&ite. Only afraction of the seals
using a site are ashore atany given count. However, individual seals can be
identified by tags, scar atterns, and the use ofetmporary bleach marks. In
those instances where many counts can be made over 6 weeks, drbecomes
possible to achieve a virtually complete tally of the population using the site.
further description of monk seal dynarnts appears inSection 14.5 (Case
Histories).

The analysis in this example thus contrasts the mean beach counts
against population totals for 3 sites, usingregression through the origin.
Becausea is now assumed zeradhe regression model becomes y =pxj + €. The

least-squares estimate ¢ is;

Zy,%
i 129)

2X
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which is eq.(1.9) without the means, e.g., =(xj - X )2 is now =xj2 . Apart from
this change in definitions, the analysis (Table 1. 7) proceeds as imptbh@ious
example, with one other exception. Inasmuch csis not includedin the model,
we use n-1 d.f. where regressicaanalyses with 2 parameters o and B) use n-2
d.f.

Table 1. 7 Data for a test of equality of slopes for 3 regression lines relating mean
beach counts to total abundance for Hawaiian monk seals at 3 sites.

Source SSx  SSxy SSy Slope d.f. S.S. M.S.

KURE 63431 26670.2 11782.3 0.420 11 568.50 51.68

LAYS 6576511  98198.4 60015.1 0.301 9 283.36 31.48

FFS 1338292 410254.5 126842.6 0.307 4 1078.76 269.69

1930.62
Pooled 2059374.0 635123.1 198639.9 0.308 24 2764.196 115.17
Difference between slopes 1 833.580 833.58

F 7.238
Prob. 0.013

It thus appears that there is asignificant difference awng sites, with
one site (Kure) having asignificantly greater slope (b) han the other two,
where the slopes are virtually identical. The two relationships appear in
Fig. 1.12. The site withthe largest total countg¢French FrigateShoals) comains
many small islands, some eafhich are small enough that it has been difficult
to approach seals for identification. The "total" counts at that site have thus not
been considered complete, but the datafor the recent 5years (@991-1995)
considered hexr now suggestthat the aparent total counts do agreewith the
relationship between beachcounts and totals atLaysan, suggesting that the
FFS data may now approximate actual totals.

250 -
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Fig. 1.12. Relationship between mean beach counts antbtal counts atthree
monk seal population sites. Regression through the origin for Kure is shown



1.22

by a solid line, while the same regression for Laysan andFrench Frigate
Shoals appears as a broken line.

One other issue illustrated by the monk seal datashould be discussed
here. This is the aggravating question of "outliers". In some data sets, there are
points that seem evidently to liwell away from atrend evident inthe bulk of
the points. This is the case with the Laysan data. There are wmos\Fig. 1.13)
that are well away from the trend line (and werenot used in theanalysis of
Table 1. 7). Simple and direct methods are mekilable for deciding toexclude
"outliers". However, in extreme cases likhis one, wecan simply consider the
probability of such adeviation. The standard deviation othe distribution of
points around the regression line for Laysan isthe square root of the Mean

Square ofTable 1.7,which is 31.48 1/2 =56. Deviations ofthe two suspect
points from the regression line are 65 and 62units, or about 10 sindard
deviations away from the line. Clearly these td@eviations have anextremely
low probability of arising by chancealone. Corroboration isalso available in
that the two points (they occurred insuccessive yearsyepresent anincrease
in population size that is simply not feasible, and asubsequent decreasethat
surely would have been detected (dead seals) if it occurred.
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Fig. 1.13. Position of two aberrant counts at Laysan Islandrelative to the
regression line and data from which it was calculated.

1.10 The Analysis of Covariance

The analysis ofcovariance depends onthe availability of an auxiliary
measurement linearly related tothe variable of interest. Consider aone-way
analysis of the vyield (y of fruit trees subjected to several differenteatments
(different types of fertilizer or perhaps insecticides)that presumably will
increase yield. Yield of individualtrees mayvary with the size and lacation of
the tree, so a useful auxiliary variable may be the yielgj)(af a given tree in
the year before the treatments wre applied. Hence, aone-way model without
information from the auxiliary variable is:
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Yij = Hi + €]

but the auxiliary variable can be introduced by:

¥ = Hi + B(Xjj - X ..) +&jj (1.28)
so that the adjusted mean for a given treatment becomes:
Vi =Hi +B(Xi. -X.) t7ej.

The ANOVA for a covariance adjustment then testhether adjusted means are
significantly different. The dot notation is used with multiple sulscripts to

indicate which subscript isinvolved in averaging. Thus x j. Denotes the
average over | for the ith group.

A key assumption inthe analysis ofcovariance isthat the samelinear
relationship holds in all of the treatment goups. Thus we need touse the
methodology of Section 1.9 to test the hypothesis thatpj within treatment
groups are not significantly different. Someinvestigators mayproceed with
the analysis without testing homogeneity tbe slopes.This is not wise unless
there is agood deal ofprior experience onwhich to base such adecision.
Inasmuch as bothanalyses depend on muchthe same comutations, prudence
calls for computing the results given in Table 1.5 and 1.7 in any case.

The data are arranged in the same way as in the previous section, but we
here assume thesame number of observations ineach treatment group,
giving a table like the following:

A B C
X y X y X y
X11 Y11 X21 y21 X31 Y31
X12 Y12 X21 Y21 X32 Y32

X1j Y1j X2]j Y2j X3]j Y3j
XIn Y1In X2n Y2n X3n Y3n

To provide an example, a table of data from Snedecor and Cochran follows:

A D F
X y X y X y
11 6 6 0 16 13
8 0 6 2 13 10
5 2 7 3 11 18
14 8 8 1 9 5
19 11 18 18 21 23
6 4 8 4 16 12
10 13 19 14 12 5
6 1 8 9 12 16
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11 8 5 1 7 1
3 0 15 9 12 20
Means 9.3 5.3 10 6.1 12.9 12.3

From the ANOVA for simple regression we had the following results (eq.(1.11):
n n n
=y =S -0 =Sy -’
Total S.S. - Regression S.S. = Error (Residual S. S.)

The error term can be written in various ways

> Y = Y Iy ~(@-+bx)]°

n

=S -9 -b°Y (% -%)°

: [S (=)0 - )P
=S -9y - 1.29
= > (% -x)°

with the last result being most useful here. It isobtained by using the
definition of b in developing eq(1.29) from equaion for the Residual (Error)
Sum of Squares above. The above calculations arexpressedfor one goup of
data, so in dealing with several groups below, a subscript for the jth

observation in theth group needs to be added.

The calculations proceed bycomputing the 3 conponents ofeq.(1.29)
and arranging them in an ANOVA type of table in which the Total S.S. is
calculated from the entire set dfata, using overall means of x and g.g.with

k n

k=% 5 (% —X)’
the other values SSy, and SSxy calculated in the same manner. Thus,
k n 5 k n
Sy = (yij -y andSS<y=ZZ(yij _y..)(xij —X).
1=1 J=1 =1 =1
The Error line is calculated by using the group means, e.g.,
k n
SX=% % (% -%)°

The Between S.Sare readily obtained bysubtracting the line for Error S.S.
from Total S. SThese calculations hen give the following table from thedata
above:
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Source d.f. SSx SSxy SSy M.S.
Total 29 665.9 731.2 1288.7
Between 2 729 145.8 293.6

Error 27 593.0 585.4 995.1 36.86

The M.S. due toerror is calculatedfrom SSy/d.f. =995.1/27 36.86 in the Error
line of S.S.just as it would be donewithout the auxiliary variable. The other
entries in the table areneeded toobtain areduction in the error sum of
squares as shown below.

The "reduction due toregression" isobtained from (SSxy)ZISSx in the
Error line, and issubtracted from the Error sum of squares ascomputed
without the auxiliary variable, giving an estimate of erromean square
adjusted by theregression data. Thecomplete calculation of anadjusted error
mean square is thus:

Source d.f. SSx SSxy  SSy M.S.
Total 29 665.9 731.2 1288.7
Between 2 729 145.8 293.6

Error 27 593.0 585.4 995.1 36.86
Reduct. due to @1 577.9

Dev. from regr 26 417.2 16.05

An estimate of a common slope is also obtained from the error line,
b= SSxy/SS? =585.4/593.0 $.987. This value hen can be usedo get adjusted

values of =y from the following:
“Yadj = Vi - b(Xi. - X.)

The adjusted meanfor the first group of data (group A in the table above) is
thus:

5.3 -0.987(9.3 -10.73) = 6.71 = yad|

The results ofthe covariance adjstment can hen be assembled to produce a
covariance-adjusted F-test, as in the following table:

Table 1.8 Covariance F-test in one-way classification

Deviations from regression

d.f. SSx SSxy  SSy Reduc. d.f. S.S. M.S.
Treatments 2 72.867 145.8 293.6
Error 27 593.000 984 995.1 5779 26 417 16.05
T+E 29 665.867 731.2 1288.7 802.94 28 486

2 68.6 34.28

The F-ratio is34.28/16.05 =2.14 with 2 and 26d.f. and des not suggest a
significant treatment effect (P = 0.14).

The whole purpose ofthe exercise is toget amore sensitive F-test of main
effects than wold be possible without the auxiliary variable. Such an
improvement depends, of course, orthe presence ofa significant linear



1.26

relationship between the variable of interest (j) and the auxiliary variable
(xj), and this relationship needs to llecked out first (i.e., doregressions on
the data in each group (A, D, and F) first).

1.11 ANOVA as a regression model
To sketch out a basis for doingn analysis ofvariance with aregression

model, we need theconcept of a'dummy variable” which issimply avariable
that takes only values of O or 1. Consider the multiple regression model:

i ¥ W+ B1xgj + B2x2j +B3X3j

and let xj =1 if yj belongs to aparticular goup in a one-way ANOVA and O
otherwise. Then we can write:

y1=p+p1
y2=p+p1
y3=p+p1
y4=p+B2
y5=H+B2
Y6 =H+p2
y7=n+pB3
yg=u +B3
yo=p+pB3
y10=H *+ B4
Y11=p +B4
y12=p+p4

and thus have a regression modabnforming to aone-way ANOVA with three
observations in each of 4 groupgjving the general model of E{(y=p + Bj, as
is appropriate for one-way analysis ofariance. Draper and Smith (1998) give
extensions totwo-way and higher analysis and methods of fitting. The
approach islikely not of much importance here, but is mentioned to
emphasize arearlier remark that models of themultiple regression type can
be used for a widevariety of purposes,often subsumed underthe heading of
"General Linear Hypotheses".

1.12 Stepwise regression

This is an approach to regression that permits addiagiables onestep
at a time while searching for the "bestiodel for a givendata set.Consider the
test for curvilinearity of Sction 1.7. Wefirst fitted alinear regression of the
form yj =a + B1x1j and then extendedthe model tobecome a seconddegree

polynomial y = a + B1x1j + B2x2i2, using multiple regression to fit the model. We
then tested for a significant "improvement fif' by comparing the reduction
in Sum of Squares obtained bywgubtracting the deviations from curvilinear
regression (Residual S.S.) from the deviations from linear regression, and
tested significance of the improvement by anteB. We noted that theprocess
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could be extended to a third-degree polynomial=yx + B1x1j + B2x1i2 + B3x1i3 to
test for amore extreme curvature. Weused multiple regression to fit the
models, letting gj = x1i2, (and x3j =x1i3 if the model vere exteded totest the

further improvement ofadding a "cubic" term). This kind of procedure is
employed in stepwise regression, but is not, of course, restricted to
polynomials. Any series of variables can be testedsuccessively for the
improvement of fit produced aseach new variable is introduced. Computer
programs are available that will test all conbinations of aset of candidate
variables but the results are practically guaranteed to be isleading, as
enough manipulation will almost always produce a"good fit". One should use
stepwise regression only when there is aolgical sequence ofmodels totest,
and even then it idikely that the final model will be "over-fit" (i.e., have too
many independent variab®. One useful approach is todevelop amodel on
half the data andcheck it onthe other half. Usually, ectogists donot have
enough data to hold half of it in reserve while studying a model. An

alternative isknown as"cross-validation”. In it aseries offits are used and
each observation isleft out in turn, and used tocheck the error variance
estimate from the fitted model. Such atest is "computer-intensive", i.e.,

depends onthe ability of the modern computer toconduct many calculations
in a short time.Anyone phnning touse stepwise regression should consult
references like Draper and Smith (1998) first.

1.13 Logistic regression

This is a form of regression analysis developed fordata of thebinomial
form, i.e., in which the variable of interest is either 1 or @r "yes" or "no",
"present orabsent”, et¢c which can becoded as lor 0). Usually we express
results as a proportione.g, the proportion surviving after some timeinterval
or sometreatment. Logistic regression originated inthe field of bioassay, in
which the response to a given dose of sosubstance istudied quantitatively.
If one plots theresponse (proportion surviving orotherwise responding to
some treatment) against the dose (often quantity of some substance given an
individual) the resulting curve is usually sigmoid (s-shaped). The cumulative
normal curve provides a convenient s-shapeddeh, and is usedn bioassay in
"probit" analysis. Details of methods used for bioassay ginen by D.J.Finney
(Statistical Method in Biological Assay, 3rd Ed. 1978, Charles Griffin and co., Ltd.
London).

Joseph Berkson proposed using the logistic function as a bioassagel
in 1944. The basic model is:

oo 1
- 1+ e—(a+bx) (1.30)
where Pdenotes the dependent variableand x is the independent variable
("dose" in bioassay). Because P is a proportion,

g(@b)

o (131)

Q:]_—P:
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and we can now consider the ratio of P and Q:

% =+ BX (1.32)

The ratio of P to Qs sometimes called the "odds ratio”, no doubt because it
expresses the odds for a particular outcome.

Now the natural logarithm of this “odds ratio” {eq.(1.32)]is a linear function,

P
Q

This is called the "logit" transformation.

In(=) =a + Bx (1.33)

There is an interestingsidelight tothe logit transform. Consider atable
of proportions (e.g.,several species of plantsclassified bywhether they have
flowers, fruits or neither). One can then calculate the natural logarithm of the
"odds ratio" and analyze the linear model of eq. (1.33). Thigersned loglinear
regression by some authors and can be extendedehave like the analysis of
variance. Ithas been used largely in the social sciences, but could well be of
interest in ecological circumstances where one must analyze tables of
proportions (or tables ingeneral, for that matter). Itshould be noted that we
will also usethe term “loglhear regression” toefer tothe log transform of
eq.(1.22).

Exampl e 1.3 An exanpl e of |ogistic regression

In aerial <counts of wldlife populations, the nunber of
i ndividuals in a group has a marked effect on visibility. This has been
studied by using aninmals with attached radiotransmtters and recording
the frequency of observation of groups containing these individuals.
Such a study of elk has been used to correct for visibility (M D
Sanuel et al. 1987. Visibility bias during aerial surveys of elk in
northcentral |daho. Journal of WIdlife Mnagenent 51:622-630). The
following table shows the data (only snall sanples were available so
that |arger groups had to be conbi ned).

Table 1.9 Sighting data froman aerial survey of radi o-marked el k.

Logi t
G oup Proportion transfornmation
size Mssed Seen seen | 0ge(P/Q
1 18 5 0.217 -1.281
2 7 6 0. 462 -0.154
3 5 5 0. 500 0. 000
4 4 6 0. 600 0. 405
5 4 9 0.692 0. 811
6 6 4 0. 400 -0. 405
11 3 14 0. 824 1.540
23 0 10 1. 000
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The sinplest way to fit this data is to use eq. (1.33), i.e., regress
the logit values (right-hand colum) against x. In this case, the
i nvestigators used the logarithmof group size in their analysis, so we
use In (group size) for x in Fig. 1.14, which shows the regression fit.

Due to the fact that the independent variable is from a binom al
distribution the linear nodel inplied by eq. (1.33) does not give the
best fit to the data. Instead, the technique of maxinmm Iikelihood
estimation is recomended. If we assume a particular frequency
distribution (probability distribution function in Section 1.2)
underlies a set of observations, then it my be possible to find
expressions that often mnimze the variance of an estinated quantity.
Met hods of mathematical statistics are required to derive such
estimators, but many of the comonly-used estinates are also maxi num
likelihood estimates. In the present case, there is no sinple expression
for estimating the parameters of eq. (1.32) so that an iteritive nethod
is required to solve the maximum |ikelihood equations. The method used
here is due to J. Berkson (Tables for the maxi mum|likelihood estinate of
the logistic function. Bionetrics 13:28-34, 1957). Maximum |ikelihood
estimates for logistic regression can also be obtained in sonme of the
avail abl e statistics progranms (e.g., SYSTAT).
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9 p y = - 1.1180 + 0.97394x R"2 = 0.706
2+—— 71 17 1~ 1 T T 17 1T 17T T 1T 1T 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
LOG GROUP SIZE
Fig. 1.14. Regression of logit values on logarithm of group size
fromaerial survey of elk.
The paraneters obtained from the regression analysis (Fig. 1.14)
are a = -1.118 and B = 0.974, while those obtained from the naxi num
likelihood fit are sonmewhat different, being a = -1.305 and B = 1.155.

Fits to eq. (1.30) are not substantially different (Fig. 1.15).
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Fig. 1.15 Fits of eq. (1.30) to observed data on elk sightability
using regression (eq.(1.33) and nmaxi num | i kel i hood met hods.
Exanple 1.4

Two further exanples (Fig. 1.16) are based on reproductive rates
in Hawaiian nonk seals at two sites. The curves were fitted as above
using regression and naxi mum | i kel i hood esti nates.
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—
—
—
— —
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Fig. 1.16 Logistic fits of reproductive rates agai nst age of the
femal e for Hawaiian nmonk seals at two sites.
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In the upper curve, it appears that the regression and nmaxi num
likelihood nmethods give about the sanme results, while neither
provides nuch of a fit in the Ilower curve. Deteriorating
conditions (poor food supplies and survival) at the site may be
changing the curve, so that it does not represent a stable
situation. G rcunstances at the site shown in the upper curve have
been reasonably good, but there is no particular reason to suppose
that reproductive rates should follow a | ogistic curve

For conparison, some data on judging sound intensity were
fitted by the two nethods (Fig. 1.17). These data appear to fit

the logistic very well, and the two nethods of estinmation give
virtual Iy indistinguishable results.

1.2 1

1.0 A

0.8 1

0.6 -

0.4

PROPORTION

0.2

0.0 T T T T T T T T T T T T T 1
3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50
LOGARITHM OF SOUND INTENSITY

Fig. 1.17. Logistic curve fitted to data on judging sound
intensity.

1.14 Locally weighted regression

When there is no suitable model for a curve, locdly weighted
regression provides a way to fit a smoothed line. The metho#aisously called
"loess" or "lowess". Someuthors use "loess", but ecolasts will no doubt be
confused by the implication of wind-deposited soill. Weighted Ilinear
regressions are fit at each point on thgraph (e.g., if the dataspan 30years,
then such regressionsare fit at each of the 3Qears) byselecting data points
in the immediate neighborhood odach pointon the x-abcissa. The number of
points in each such neighborhood might be taken toshg, about 30% of the
total number of observations. However, this can bevaried in the fitting
program, and depends onthe purpose athand. |If one wants athorough
smoothing, then50% or more of the points might beused in each regression.
If the smoothed curve is to follow the data point closelgent asmall fraction,
perhaps aslittle as 10%, of the points should beused in each fitting.
Experimentation with the fitting program will help in developing an
approach for a particular data set.Weights diminish by acubic function, so
points very near tdhe selectedpoint get by far the most weight. The fitted
regression line determines only the y-valder the selected abcissal value. | n
effect, the technique behaves much like a moving average, but has various
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advantages. Programsto produce lowess fits are available. SYSTAT has a
routine for lowess fitting in the plotting routine (after loading the data in a
file, bring wup "plot", and select the "smooth"” function. It will then be
necessary toindicate the fraction of the data points to use in each
neighborhood). The lowess method was developed by W. S. ClevelandqJournal
Amer. Statistical Assoc. 74:829-836).

The smoothed line in Fig. 1.18 illustrate the technigque. This approach to
smoothing is preferable to the usual moving-average smoothing because it
does not leave blanks at the end of the series, and uses what seems to be a
better averaging approach. The lowess technique can be illustrated by
smoothing French Frigate Shoals monk seal beach count data. At each point
along the line (here, each year) the nearest n points are used to form a
weighted linear regression (9 points were used in producing Fig. 1.18). The
regression line is used only to determine the smoothed value for the given
point. Inasmuch as the weights and the regression line must be computed for
every point used along the x-axis (the years 1957 to 1993 in the present
example), enough calculations are involved to make use of a computer
desirable.

400
REGRESSION LINE

300 +

200 -

NUMBER OF SEALS

WEIGHTS

100

0I T T T T T T T T T T 1
1957 1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993

Fig. 1.18. Locally-weighted regression line ("lowess" smoothing) for the

French Frigate Shoals monk seal beach counts. For each year on the graph, a
weighted linear regression is computed from the n nearest points, with the
contribution of each point weighted by a cubic function of distance of the data
point from the base point. The regression line for 1987 is shown on the graph,
along with the weights assigned to the 9 nearest points. The regression line
determines only one point on the smoothed line.

1.15 Non-linear least-squares

The method ofleast-squares was discussed inSec. 1.4,and eq.(1.6) was
used to develop least-squares estimates for linear regression. The same
approach can be used to fithon-linear functions, starting with the same
equation for sum of squares:

S =2[yj -f(x)]2
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where f(x) is now somenon-linear function, such asthe logistic function of
eq. (1.30). One could find aminimum for the sum ofsquares, S, by airect
search routine. This is labor-intensive, and there are various conputer
programs that do thejob very quickly and efficiently. Some ofthese call for
partial derivatives of the function (used ‘tbnearize" the function sothat the
approach to a minimumcan be done insuccessive iterations). Others use
numerical approximations to theartial derivatives, ordirect search routines.
SYSTAT contains twosuch routines under the "nonlin" function. It requires
that a model be furnished, but this can be written in the notation useBXQfL
(really statements IimBASIC language, which underlies EXCEL). Thus eq.(1.30)
is entered as:

P = 1/(1 + EXP(-(A+B*X)))

The dataneed to beentered by usingthe Editor function (or can be read in
from an EXCEL file, or copied tothe Editor via aclipboard). Namesused for
variables (P,X) above are used ascolumn headers inthe data file, and the
SYSTAT fitting routine recognizes the other labels (exceptbuilt-in functions

like EXP) as variables to fit such as Aand B above). Trial values can be
furnished (i.e., rough estimates of A and Band the number of iterations can
be set(these havebuilt-in "default" values). It may benecessary tause trial

values if the program doesn't converge in, say 20 iterations (the default
value)), but further iterations can be tried, first. Since theprogram s
iterative, it may get stuck invarious ways, and it ishen desirable tauit, and
start over with different guesses at starting parameters.

1.16 Exercises

1.16.1 Coin-tossing. Students should tryca@in-tossing experimentlike the one
reported inexample 1.1. PutlO coins in ajar and make 100 bsses,recording
the number of heads in blocks o0f10. Make a frequency distribution and
compare it with Fig. 1.1. Try another set of 100 ac@mpare the two frequency
distributions. Compute thesample neans and variances, and compare them
with the theoretical values.

1.16.2 Simulating the binomial on @mputer. Coin-tossig gets tiresomeafter
awhile, and it is important tdook at adifferent probability model. In @der to
get large samples without the tedium of medkah approaches, wean resort
to the computer. Sidents familiar with a programming language will likely
prefer towrite a simple program. However, useful resultscan be obtained in
EXCEL and are readily in reach ofthose without programming experience.
Those with only a passing experience Wwh EXCEL may have to resort to the
HELP function (or a colleague with experience) but it important tocarry out
the following exercise because itshould provide a capsuleview of “monte
carlo” simulations. Also, the next two chapters on bootstrapping depend on use
of EXCEL. Insert the statement “RANDBETWEEN(0,1)” in a cell in anEXCEL
spreadsheet, and copy down to fill 10 cells incdumn. This generates a&eries
of 0’'s and 1's with probability 1/2 of getting either. Nowcopy the row to the
right for 100 columns (it is convenient to use the&tomatic nurbering system
in a column above the 1@ntries tokeep track—a handy little number pops up
beside toindicate how many numbers you have entered). Nowsum the
columns (use the summation function inthe legend atthe top of the sheet).
This row of numbers (the sums) is now equivalent tothe table ofdata in
Example 1.1. Now use the histogram procedure (in the Tooénu) toconstruct
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a histogram offrequencies ofresults. These should approximate the bars in
Fig. 1.1. Note that every time you make a change in the worksheet it
recalculates the table of random values (tliimction can beturned off). It is
worthwhile to calculate several histograms just get a notion of how variable
the outomes ag. Next calculate the expected values fromeq.(1.1). Find the
factorial fundion (“FACT” in Math and Trig functions). Actually, all you need
to know is that FACT(5) gives the value of 5S5Use this function tocalculate the
factorial part of eq.(1.1) next to a column numbered 0 to 10. Then entereheé
of the equation in the nextolumn (becausep=0.5=1-pthese entries will all be
the same, but we’ll use thapproach for a casewhere p isnot 1/2 below). The
product ofthe two columns gives the proportions of ¢.(1.1) which add to
unity. Now multiply 100 times the proportions, and you have the expected
values, which should approximate whgbu have in the histograms. The Chart
Wizard in EXCEL will plot expected and observedalues (youneed tolook under
“Custom Types” tofind one that plots aline and lars). One last chore is to
recalculate the expected valuessing a value ofp=0.9 which gives adistinctly
asymmetric graph. It isalways useful toput the numerical value of pabove
the calculatons and use the “$” (e.g.,.$A%$30) notation to denote p in
calculations for the equation. This lets one experiment with different values of
p. Students shouldsave a wrksheet \ith the above caldations in order to
have it for further reference when we consider other frequency
distributions.

1.16.3 Randomsampling There will be a great deal of enphasis onrandom
sampling in this course. Arelatively new topic in statistical methodology
called bootstrapping will be used extensively. Itdepends on randonmsampling
with replacement.. Courses and books on sampling hotiilogy usually depend
on sampling without replacementConsider using aumber ofsample plots to
make counts ofplants in order to estimate overall density sdme species of
plant. Such plots should be located atandom in order to assure amunbiased
estimate of density,and secure areliable etimate ofvariance. Ordinarily, an
investigator would find some way to assign a number to all possible plots in the
area to be studiedand locatethe sample plots by consulting atable ofrandom
numbers. If the same plot is drawn twice, it would not dmunted tvice, as this
usually makes no sense. Hence wdescribe this as sampling wthout
replacement. Textbooks onsampling show that itusually doesn't make much
difference whether we do in fact sample with replacement, inasmuch as as the
sample usually is asmall fraction of the total population. Bootstrapping,
however, depends onsampling with replacement as avay to reflect the
underlying frequency distribution. Consequently, most of our samples will be
with replacement, Wewill be taking repeated random samples with
replacement of adata set. Theindividual entries inthe dataset will be in a
computer file, andwe will randomly select individual entries from this file. It
is convenient tonumber the dataitems from 1 to n, and we hen need to
generate random numbers. To illustrate the approach, enter
“RANDBETWEEN(1,10)” in a ell in EXCEL and copy down the comn for 100
entries. Make ahistogram ofthe data, asn Example 1.16.2. This is asample
from a uniform distribution, i.e., a frequency distribution where the
probabilities areall equal. It is thedistribution underlying random sampling.
It is easy toextend the process to, say, 1,000 draws as in thefrequency
distribution plotted below. Note that it is still quite variable, even with 1,000
draws. Make agraph ofyour data like the following using the Chart Wizard
and post it on a spreadsheet with the calculations.
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1.16.4 Simulating adiscrete skewed distribution._ In Exercise 1.16.2 students

were asked taalculate expected valuesfor a binomial frequency dstribution

[eq.(1.1)] with p=0.9. Askewed frequency distribution isnot hard tosimulate,

requiring two changes tothe methods used in Exercise 1.16.2. Instead of

RANDBETWEEN(0,1) weuse “=RAND()” (don’t put anything in the parenthes)
which provides randomnumbers between Oand 1. We alsoneed an *“IF”

function which is the basis for a lot ofcomputer work. It evaluates an
expression and chooses betweé&mo output values,depending on whether the
expression istrue or false (there are anumber of different expressions
working along these lines, but wase the simplest dre). Set up aspreadsheet
with a column of 10 values of=RAND()”, and copyit to the right 100 times. We

again need anumerical value of p abovethis table forreference, which may

be say 0.9. If the firseentry in the first column is in position, sayD9, then in

the column just below this first column the first entry should be

“=If(D9>=$A%$3,1,0)” where the value of p is in$A$3. Copy down 10 andacross

for 100 columns andsum these entries. The IF function checks tosee if the

entry in D9 exceeds p and enters 1 if true and O if false. The stews provide

the basis for ahistogram of askewed discrete distribution. Make histograms

with p=0.1, and p=0.5. Compare thdstogram with p=0.5with the oneyou made

in Exercise 1.16.2. Make a newalculation of eq.(1.1) with p=0.9 and compare it

with the histogram withp=0.1 (actually you should have mde one inExercise

16.1.2 and need only copy it over to this onksheet for comparison. Plot the

data in Chart Wizard (expected and observed values).lt should look like the

following graph:

SKEWED DISTRIBUTION
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1.16.5. Do the algebra to calculate the expected value of eq.(1.fjvas in the
right side of eq.(1.2).
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1.16.6 Simulating a continuous skewed distribution._ A continuous random
variable isone that hasvalues in thereal domain. For our purposes, this
means values like those generated by RAND() -- amymber within the range
considered (i.e., from 0 to 1). We will consider oneway to generate random
variables from an exponential distribution here. Consider the function:
F(x) =1 - eBX (1.34)

This is an example of acumulative distribution or cumulative dstribution
function. It takes values from 0 to 1, and has qgmerameter, B, which controls
the rate atwhich the function approaches unity. The graph below shows the
function for B = 0.1 andp = 0.5.

1.0+
0.8 A
0.6

0.4

PROPORTION

0.2 1

0.0

0 10 20 30 40x50 60 70 80 90 100
Fig. 1.19 Plot of cumulative distribution function for the exponential
distribution for values off = 0.1 (solid line) and3 = 0.5 (broken line).

We use the cumulative distributiofiunction here because ittakes values from
O0to 1, and we can take sandom sample from that range (using RAND()) and
translate that to find the corresponding x value, by rearranging eq. (1.34) as

X = %Ioge(l— F(x)) (1.35)

Thus the procedure is to draw a random sample of values from RAND() | @nk
up the corresponding values of x.Eq. (1.34) is theintegral of anexponential
distribution over the range 0 to X, hencethe name "cumulative". Tocompare
the outcomes of a simulation with thequation forthe frequency distribution,
one runs asimulation asdescribed in Exercise 1.16.4, and plots theresults.
Differentiating the cumulative vyields the frequency distribution:

dF(x) _di1-eP]_ o
ax - Ix =peB (1.36)

Students whosecalculus is dlittle rusty may want tolook up the formula for

finding a differential of an exponential; others may wnt to accept the
statement without derivation. Weneed theright side of eq.(1.36) only to be
able to comparesimulation outomes vith the theoretical model, given in the
figure below. Produce a column 01000 random variables [F(x)] from RAND()

and convert them with eq.(1.35), make histogram ofthe results (using 30
“bins”) and ten calculatethe expected values by mupgliying eq.(1.36) times

1000. Plot these asbefore and seehow your result compares with the graph

below.

f(x) =
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Fig. 1.20. Simulated exponential data compared to theoretical curve.

1.16.7 Simple linear regression. Data on counts of deer on astudy area are
given below. Fit the linear regression ofFig. 1.3 by wing eqgs. (1.9). This is
readily done in EXCEL (in fact, EXCEL has a regression fittirutine which we
will use for additional exercises, but students should do the calculations
directly from the definitions in order teee howthey *“work” and thencheck
by using the built-in fitting routine). Some graphics programdl also do the
fitting automatically.

Year Number of deer
Y

10

21

52

71

97

146

212

~NoO U N WN P X

1.16.8 Checkthe fact that a and b giveminimum values ofeq.(1.6), thesum of
squares, forthe deerdata of Exercise 1.16.7. Copythe results ofExercise 1.16.7
into a new worksheet and compute eq.(1.6) for a and b,setting up the
worksheet sahat a and bare listed asseparate entries omhe worksheet as
shown below. Then vary a and b by small amounts and wite down the
resulting sums of squares in the tablehat is, make a table like thefollowing
and fill in the entries. It iseasiest to first make yourentries in pencil as
transferring them individually to a summary table in EXCEL calls for a lot of
tedious use of “Paste Special” in the menu, and/or provides opportunities to
forget which cell you were working with. You should find aminimum in this
table. If you want to tryto get closerto the values of aand bfound in Exercise
1.16.6, make a new table withfractional values in the row and column
headings (e.g.,31.1, 31.2, etc.) and fill in the new tallkis approach provides
a device that is somtimes useful tosolve apair of more complexequations
without needing touse anon-linear least-squaresfitting routine. It istedious
unless you can guess reliably inadvance just which part of the “Sums-of-
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Squares” space the answer lies. But the purpose here igust to show how
things work.
Sums-of-Squares table(eq.1.6)
b
30 31 32 33 34
-39 2046
-40
-41 252C
a -42 1987
-43
-44
-45 2184

1.16.9 UseEXCELand eq. (1.11) tccalculate ANOVA for a regression equation
for the data ofExercise 1.16.7 and compare your results with those given in
Table 1.1. Now use th&XCEL regression program (found in the same grup of
analysis tools asare the ANOVA programs) tosee how itworks, and add the
results to your direct computations.

1.16.10 Compute the correlation coefficiefdor the deer data from eq. (1.12). It
can also be directly computed usingfunction CORRELfound in the functions
menu.

1.16.11 Compute %5 from eq. (1.15) for the deer data. Nowcompute itassuming
that you have 3 observations (9,10,11) from year 1 and 4observations
(207,210,212,219) atyear 7 (and noobservations for gars 2,3,4,5and 6). You
will need torecalculate everything for the new data. What do youconclude
about the effect ofthis arrangementof the data on §? Would you recommend
this approach? Why?

1.16.12 Compute confidence limits fdr from eq.(1.16) using thefollowing set
of data. Show details of your conputation (i.e., the components of the
calculation on a spreadsheet).
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Note that the a in eq.(1.16) isnot the same as in the regression model. It is
standard notationfor the probability lewl. Use a= 0.05 here. You can obtain
the neededt-value from the functions in EXCEL (f, on the Toolbar) which is
TINV(a,d.f.) wherea is the desired probability for a 2-tailed t-testou can run
the regression analysis in EXCEL to confirm your results.

1.16.13 Multiple regression. Calculate amultiple regression equation on the
following data, using eqs.(1.19) and check your resultsEXMCEL. The datawere
used in an early effort to construct an index ofuattance forgrizzly bears in
Yellowstone National Park. Use the logarithm of theunt as y and“Yr.” As x1
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and “Freq. Sight” asx2. It is important not to use theactual 4digit year as x1
because it can cause a loss of accuracy when larger data sets are involved.

Year Count In count Yr. Freq. sight.
1976 17 2.8332 1 1.64
1977 13 2.5649 2 1.50
1978 9 2.1972 3 1.28
1979 13 2.5649 4 1.08
1980 12 2.4849 5 1.40
1981 14 2.6391 6 1.58
1982 11 2.3979 7 1.62
1983 13 2.5649 8 1.20
1984 17 2.8332 9 2.29
1985 9 2.1972 10 2.00
1986 25 3.2189 11 3.12
1987 13 2.5649 12 1.64
1988 19 2.9444 13 2.12
1989 16 2.7726 14 1.86
1990 25 3.2189 15 1.95
1991 24 3.1781 16 2.65
1992 23 3.1355 17 1.65
1993 20 2.9957 18 1.67
1994 20 2.9957 19 1.47

1.16.14 Performthe test forcurvilinearity described inthe text (Sec.1.7) and
illustrated in Table 1.5 on the following sets of data. Make @&preadsheet
containing the ANOVA tables (as in Table 1.5)note that thedeer data arealso
included here so/ou have an example ofhe expected results at hand) and
discuss theresults as theyapply tothe notion that one should test for the
assumptions before doing an analysis. Do the tests ofANOVA tables provide
convincing evidence of nonlinearity in the data?

Year Horses Year Deer Year Elk
1 340 1 10 1 3172
2 423 2 21 2 4305
3 482 3 52 3 5543
4 611 4 71 4 7281
5 762 5 97 5 8215
6 879 6 146 6 9981

7 212 7 10529
8 12607

Year Gray seals Year Muskox
1 751 1 49
2 854 2 57
3 869 3 65
4 898 4 61
5 1019 5 76

11615 The following data arereplicate monk seal beach counts fromFrench
Frigate Shoals.Conduct a test forsignificant deviations from regression using
the “pure error” model of Section 1.6. There may be aadvantage inusing
logarithms of the counts (to approximately “normalize” the data), asvas done
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in Section 1.6,but try the analysis without the log transform. Report your

results in an analysis of variance on a spreadsheet, as in Table 1.3.

1985 298

250
301
403

1986 401

285
278

1987 351

285
316
301
320
350
333
252
362

1988 292

303
288
286
315
327
327
354

1989 331

1.16.16 The following dataare from three years of a surveyf harbor
there were replicate transects flown and the transect lengths were recorded.

Year
1986

337
322
313
279
292
319
354
375
363

1990

1991

1992

1993

Km. Count

552
318
445
399
195
150

48 1987
31
9
59
1
10

264
271
262
300
299
300
176
191
216
217
197
185
281
273
204
202
226
227
234
271
231
156
195
186
182
189
221
161
184
187
208
194
219

Km.
326.6
117.5

752
384.4
58.5
223.2

1994

1995

Count
1
12
30
24
0
6

193

183
219
190

196
198
202
232
222
249
141
124
168
132
140
144

174
156
164

Km. Count
1988 199.1 1
66.5 12
374.7 5
685.7 71
333.7 0
311.9 18

porpoises

invhich



1.41

Test for significant differences inslopes of regresens of porpoise counts on tansect
lengths as done in Section 1.9. Report your results on a spreadsheet.

1.16.17 Perform an analysis of covariance (Section 1.10) on the datBxefcise 1.16.16,
and report your results on a spreadsheet. tBis alegitimate analgis in view of the
results of Exercise 1.16.167 Explain.



